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Quantum motion of three trapped ions in one dimension
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Abstract. The hyperspherical-coordinate approach is employed to a one-dimensional model of three ions
in a Paul trap. It is shown that the eigen wave functions have well-defined η, θ nodal structure indicating
a near separability in the hyperspherical coordinates, then two approximate good quantum numbers are
introduced to classify the eigenstates. Three important classical periodic motions, including the breathing
motion and the (distorted-)symmetric or anti-symmetric stretching motion, are found to dominate the
wave function distribution.

PACS. 32.80.Pj Optical cooling of atoms; trapping – 03.65.Ge Solutions of wave equations: bound states
– 42.50.Vk Mechanical effects of light on atoms, molecules, electrons, and ions

1 Introduction

Recently, quantum computation based on trapped-ion
physics has become a hot topic. One of the choices for real-
izing the quantum computation is an array of trapped ions
in a collinear configuration, which can be achieved experi-
mentally in a linear trap or a Paul trap where the restoring
forces are much softer in one principal-axis direction than
in the other two orthogonal directions. To understand the
dynamics and cooling process of the ultracold ion configu-
ration, one needs to study the quantum mechanics of the
trapped ions in one dimension. Some initial steps have al-
ready been taken [1,2]. In reference [2] Yin and Javanainen
take their approaches to a one-dimensional model of two
ions in a Paul trap. Their discussion is an offshoot of an
experiment of Eichmann [3]. Duan et al. [4] extend to one-,
two- and three-dimensional cases by obtaining a series so-
lution of this problem. The present study is dedicated to
the three-ion problem. As an initial study we will not con-
sider the internal structures of the ions, that is, we shall ig-
nore the internal degree of freedom, as Yin and Javanainen
did in reference [2].

On the other hand, the Paul trap becomes a so-
called “chaos lab” when more than one charged particle
is trapped simultaneously. In the absence of laser cooling
the Paul trap is a promising testing ground for ideas in
classical and quantum Hamiltonian chaos. While chaos is
generally concerned with the classical level, the quantum
dynamics of the few-particle Paul trap provides new in-
sights into the question of quantum chaos. References [5–
8] show that even the collinear model of the atomic and
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molecular systems, e.g., the one-dimensional atomic he-
lium and hydrogen molecular ion, provides a rich variety
of periodic orbits, a typical situation in nonlinear chaotic
systems. Quantization of these orbits yields eigenvalues
in good agreement with quantum results [6]. The system
studied in this paper is another simple model for the re-
stricted three-body problem, the collinear three trapped
ions. The most collinear three-body systems reported pre-
viously are chaotic, however our work [9] based on clas-
sical treatment shows that the system of three trapped
ions with a collinear configuration possesses a pure regu-
lar KAM zone. Thus, the corresponding quantum motion,
besides providing us with interesting dynamical behavior
and formal classical-quantum comparison, may actually
be useful in providing new physical insights into the three-
body problem.

In the next section we solve the Schrödinger equation
in terms of the hyperspherical coordinate approach. The
eigensolutions are investigated and two quantum num-
bers are introduced to classify the eigenstates in section 3.
Then there follows a comparison between the classical pe-
riodic orbits and the quantum wave functions. In section 4
a brief review and discussion are presented.

2 Model and procedures

We consider three identical ions with massm and charge e.
Let us start with the one-dimensional motion under the
harmonic oscillator binding potential with frequency ω0.
For this one-dimensional model (see Fig. 1), the total



192 The European Physical Journal D

X

Z

Y

Fig. 1. The one-dimensional model of three Paul trapped ions.

Hamiltonian reads
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2m
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(p2zi +m2ω2
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i )

+
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4πε0

(
1
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1

|z2 − z3| +
1

|z3 − z1|
)
. (1)

Let us review the classical formulas first. By setting z2 >
z3 > z1 (as shown in Fig. 1), and introducing a coordinate
of the center of mass, Zc, and relative coordinates, u1 and
u2,

Zc =
1
3
(z1 + z2 + z3),

u1 = z2 − z3,
u2 = z3 − z1, (2)

where both u1 and u2 vary from 0 to ∞, we can separate
the center-of-mass motion from the relative motions and
focus on the latter. Scaling the length u1 and u2 by the
equilibrium distance d0 and the time by 1/ω0 as

ξi = ui/d0,

τ = ω0t, (3)

where d0 = [ 5e2

16πmε0ω2
0
]1/3, the Hamiltonian scaled by

[mω2
0d

2
0]

−1 for the relative motion is

H = p21 + p22 − p1p2 + V (ξ1, ξ2) , (4)

where pi denotes the momentum associated with the new
coordinate ξi, i = 1, 2, and the potential

V (ξ1, ξ2) =
1
3
(ξ21 + ξ22 + ξ1ξ2)

+
4
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Fig. 2. The equipotential curves of the potential V in (a) ξ1,ξ2

coordinates and (b) η, θ coordinates. The potential minimum
is located at θ = 0, η =

√
2 or ξ1 = ξ2 = 1.

We may also introduce the Jacobi coordinates R, r as

Zc =
1
3
(z1 + z2 + z3),

R = z2 − z1 (0 ≤ R <∞),

r = z3 − 1
2
(z1 + z2) (|r| ≤ R/2). (6)

In terms of the scales of d0/
√

2 and 1/ω0, the Hamiltonian
for the relative motion becomes
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 . (7)

Furthermore, defining a set of hyperspherical coordinates:

R = η cos θ,

r =
√

3
2
η sin θ, (8)

with the conditions of η ≥ 0 and |θ| ≤ π
6 , one gets the

Hamiltonian

H =
1
2

(
p2η +

p2θ
η2

)
+
η2

2
+

2
√

2
5η

f(θ), (9)

where

f(θ) =
1

| cos θ | +
1

| cos(θ − π/3) | +
1

| cos(θ + π/3) | . (10)

The equipotential contour of the potential V as a function
of ξ1 and ξ2, and of η and θ, respectively, is plotted in
Figure 2.

From equation (9), we write the Schrödinger equation
of the system as (in the following, we let m = � = 1)[

−1
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2
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2
5η

f(θ)

]

×Φ(η, θ) = EΦ(η, θ) . (11)
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Since the three ions are identical particles, the quantum
Hamiltonian is invariant when the positions of any two
ions are changed. Then the wave functions could be clas-
sified into either symmetric or antisymmetric, and the re-
gion for the variable θ should be changed into −π to π.
To obtain the eigensolution of the Schrödinger equation,
we expand the wave function by a set of basis functions:

Φ(η, θ, ω) =
∑
nm

Cω
nmφ

ω
n,m(η, θ), (12)

where

φω
n,m(η, θ)=Nnm(

√
ωη)|m|e−ωη2/2L|m|

n (ωη2)Xm(θ), (13)

and

Xm(θ) =
1√
π

{
cosmθ, for the even parity,

sinmθ, for the odd parity.
(14)

Here, Nnm =
√

2ωn!
(n+|m|)! , ω is a variational parameter,

and L|m|
n the Laguerre polynomials. This basis function

φω
n,m(η, θ), satisfying the equation
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φω

nm(η, θ) =

εnmφ
ω
nm(η, θ), (15)

is the eigen wave function of a coplanar harmonic oscilla-
tor of frequency ω with the energy εnm = (2n+ |m|+1)ω.
Considering the exchange symmetry of the identical par-
ticles, we reach

Φ(η, θ) = Φ(η, θ ± π/3), (16)

then the angular quantum number m has to be

m =

{
3(2l + 1), for the even parity, l = 0,±1,±2, . . . ,

6l, for the odd parity, l = ±1,±2, . . .
(17)

The functions defined in equation (13), with their m
value given by equation (17), construct a sub-space of the
Hilbert space for |θ| < π, then they are orthogonal in the
region of |θ| < π/6 as well. Thus, we have

Φ(η, θ = ±π/6) = 0. (18)

It is easy to derive the matrix elements:

〈n′m′|η2|nm〉=δm′,m[−
√
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+(2n+|m|+1)δn′,n −
√
n(n+|m|)δn′,n−1]/ω, (19)
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×
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2
+

1
2

)
(n− k)!

×
Γ

(
n′ − k − |m| − |m′|

2
+

1
2

)
(n′ − k)!

×
Γ

(
k +

|m′| + |m|
2

+
1
2

)
k!

×〈m′|f(θ)|m〉, (20)

where the value k varies from 0 to min(n, n′). To calcu-
late the matrix element of the function f(θ), we use the
following integration:∫ π

6

−π
6

Xm′(θ)Xm(θ)
cos(θ ± π/3)

dθ =
∫ π

6 ±π/3

−π
6 ±π/3

Xm′(θ)Xm(θ)
cos θ

dθ.

In this integration, the value of the angular quantum num-
ber m, and the boundary conditions of equation (18) have
been considered. Thus we derive the matrix element for
the function f(θ):

〈m′|f(θ)|m〉 = 6
∫ π/6

−π/6

Xm′(θ)Xm(θ)f(θ)dθ

= 12
∫ π/2

0

Xm′(θ)Xm(θ)
cos θ

dθ

= Π
(−)(|m|+|m′|)/2+112

π

∑ 1
2k − 1

, (21)

where Π denotes the parity, and k in the summation
changes from (|m′ −m|)/2 + 1 up to (|m′| + |m|)/2. The
matrix element involving the mutual Coulomb potential
for one-dimensional three-body systems is generally not
integrable but can be numerically calculated in other co-
ordinates [5]. We overcome this difficulty by the use of
the angular basis functions with the choice of the angular
quantum numbers by considering the boundary conditions
and the symmetry of the system. This will ensure the cor-
rectness of our calculated results.

3 Eigensolutions and their classification

We solve for both the even and odd parity eigenvalues
of the Schrödinger equation by diagonalizing the Hamil-
tonian in a Hilbert space of the 850 basis states (with
Nb = 2n+m up to 102). In our practical calculations the
variational parameter ω is chosen to be 3.9 to minimize
the energy of the ground state. In Figure 3 we plot the
contour of the norm of the eigen wave functions of some
lower energy states. It is shown clearly that the distri-
bution of the wave functions can be classified according
to their nodal lines along both of the η and θ directions.
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Fig. 3. Distributions of the wave functions in the η, θ coordinates. We label the states with the numbers of nodal lines along
the η and θ directions.

Further investigation to the higher-energy states supports
this conclusion. This results in a classification scheme. We
simply use the numbers nη and mθ of the nodal lines in
the two directions to label these states. Thus the parity of
a state is just the same as even or odd mθ of the state.

In Table 1 we present the eigenenergies. From the data
in this table, we may easily find a formula to fit roughly
the energies as

E(nη,mθ) ≈ A(2nη + 3mθ + 4) +
B

2nη + 3mθ + 4
+ C,

(22)

where the fitting parameters A = 0.972, B = 0.364, and
C = 1.732.

In order to gain insight into the physical quantum wave
function distributions, we redraw the states of Figure 3 in
Figure 4 in terms of the ξ1 and ξ2 coordinates. Through
the analysis of the nodal structures we may find the modes
of internal motion among these quantum states [10,11].

From these pictures and the data in Table 1 one may con-
clude:

i) The energy for the ground state is 5.71093, 1.71093
larger than that of the system in the absence of the mutual
Coulomb interaction, for which its zero-point vibration
energy should be [2n+3(2l+1)+1] = 4. The wave function
of the ground state (0, 0) locates near the region of θ =
0 and η = 2, a little larger than the minimum of the
potential, i.e. θ = 0 and η =

√
2. Evidently, the motion

of this state is a small oscillation around a valley of the
potential. There is no nodal line in the wave function, as
we expected.

ii) Let us consider the sequence of the (nη, 0) states.
The wave functions of these states locate along the line
of θ = 0 (or ξ1 = ξ2). In classical mechanics, this corre-
sponds to a periodic-orbit so-called “breathing” or sym-
metric stretching motion if one stands at the position of
the third ion z3.
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Table 1. Eigenenergies of the collinear three Paul trapped ions.

mθ = 0 1 2 3 4 5

nη = 0 5.71093 8.54578 11.42628 14.33613 17.26436 20.20556

1 7.62493 10.49609 13.39127 16.31056 19.24445 22.18951

2 9.55409 12.45244 15.35785 18.28605 21.22501 24.17374

3 11.49483 14.41405 17.32573 20.26267 23.20596 26.15826

4 13.44493 16.38028 19.29506 22.24048 25.18722 28.14310

5 15.40297 18.35054 21.26627 24.21960 27.19404

6 17.36778 20.32429 23.23971 26.20007 29.17491

7 19.33811 22.30101 25.21561

8 21.31266 24.28025 27.25287

9 23.29041 26.26160 29.23677

10 25.27064 28.24473
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Fig. 4. The same as Figure 3 but in the ξ1, ξ2 coordinates.
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Fig. 6. The distributions of the wave function for the (0, 12)
and (8, 1) states, which correspond to the classical periodic
orbits shown in Figures 5(a) and (b).

iii) The classical study [9] shows that the classical mo-
tion of the system is not chaotic but regular, and all of
the trajectories locate on a KAM torus. The study also
shows that the KAM torus is dominated by two periodic
orbits. One is the anti-symmetric stretching and the other
a distorted symmetric stretching (see Fig. 5(a) and (b)). If
one investigates the (0,mθ) and (nη, 1) families, it will be
found that as the quantum number mθ or nη increase, the
wave function distributions of these two kinds of states
will primarily overlap the location of these two classical
periodic orbits. Two examples of these two families are
shown in Figure 6.

iv) More general modes of quantum motion corre-
sponding to the classical motion on a KAM torus (see
Fig. 5(c) and (d)) should be the other quantum states
with nη and mθ greater than 1, corresponding to clas-
sical symmetric and anti-symmetric quasiperiodic orbits
(Fig. 5(c) and (d)). In fact, as the system is excited to
higher states, the four modes corresponding to the four
classical quasi-periodic orbits mentioned above will appear
in the distributions of the wave functions (as an example,
see Fig. 6)

4 Summary and discussion

We have carried out a systematic study of a one-dimen-
sional model of the trapped three-ion system in a static
potential well, which would apply to a “linear” Paul ion
trap. For the quantum solutions we emphasize the follow-
ing conclusions:

1) The hyperspherical-coordinate method we employed
here could be applicable to most one-dimensional models
of three-body Coulomb systems, since the integration (19)
can be applied with only a slight modification. This will
overcome the difficulty of the singularity of the numerical
integration at the two-body collision.

2) The quantum states can be classified in the scheme
of the nodal numbers in the two η and θ directions. The
mode of the motion of a quantum state is governed by its
nodal structure, which is determined by the symmetry and
the energy of the system. Different states are characterized
by different modes of motion. Higher states are generally
dominated by more complicated modes, especially for the
states with their quantum number nη,mθ more than 2.

3) The phenomenon of density enhancement of the
probability density distributions of a high-energy eigen-
state along a periodic orbit is called scarring [12], which is
the trace of the classical chaos in the corresponding quan-
tum states. In general, the classical motion of collinear
three-body Coulomb systems is chaotic [5–7], the motion
of the two Paul trapped ions in all three dimensions is
chaotic too [13]. However, for the present model, we can
only find the regular motion classically [9], which is in
agreement with the distributions of the wave function.

It should be pointed out that the classical motion of
a collinear trapped three-ion system in the Paul-trap rf
driving fields becomes chaotic [14]. It should be more in-
teresting to study its corresponding quantum motion. An-
other further study is the semiclassical quantization of the
classical KAM torus or the periodic orbits. The results will
be reported elsewhere.
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